Anleihen-Preis-Rechner
Der Anleihen-Preis-Rechner hilft dabei, den fairen Wert von Staats- und Unternehmensanleihen basierend auf der erforderlichen Diskontierungsrate zu bestimmen. Berechnet automatisch den aktuellen Preis, Duration, Konvexität und Premium/Discount-Analyse. Unterstützt Nullkupon- und periodische Kuponanleihen. Ideal für Investoren, Festverzinslichkeits-Analysten und Portfoliomanager, die Investitionsmöglichkeiten bewerten, Anleihen vergleichen und Sensitivitätsanalysen für strategische Entscheidungen durchführen.
Berechnen Sie den Anleihenpreis
Anleihendetails
Kupon-Details
Wie funktioniert der Anleihen-Preis-Rechner und wofür ist er nützlich
Der Anleihen-Preis-Rechner bestimmt den fairen Marktpreis von Anleihen auf Basis einer erforderlichen Rendite. Er unterstützt Nullkupon- und periodische Kuponanleihen und berechnet automatisch den aktuellen Preis, die Duration, die Konvexität sowie eine Premium/Discount-Analyse. Das Tool ist nützlich für Privatanleger, institutionelle Investoren, Portfoliomanager und Analysten, die Anleihen vergleichen, Investitionsentscheidungen treffen oder Sensitivitätsanalysen zu Zinsänderungen durchführen möchten.
Eingaben und Ausgaben
- Eingabeparameter: Nennwert, Jahre bis zur Fälligkeit, erforderliche Rendite, Kuponrate, Zahlungsfrequenz oder Nullkupon-Auswahl.
- Berechnete Werte: Faire Preis (Barwert), Barwert der Kuponzahlungen, Barwert des Nennwerts, Premium/Discount-Klassifizierung, aktuelle Rendite, Duration und Konvexität.
- Unterstützte Zahlungsfrequenzen: jährlich, halbjährlich, vierteljährlich, monatlich.
Wesentliche Formeln
Nullkupon-Preis-Formel: Preis = Nennwert ÷ (1 + Rate)^Jahre
Anleihenpreis-Formel: Preis = Σ(Kupon ÷ (1+Rate)^t) + Nennwert ÷ (1+Rate)^n
Duration-Formel: Duration = Σ(t × PV des Flusses t) ÷ Anleihenpreis
Konvexitäts-Formel: Konvexität = Σ(t×(t+1)×PV des Flusses t) ÷ (Preis×(1+Rate)²)
Aktuelle Rendite-Formel: Aktuelle Rendite = (Jährlicher Kupon ÷ Anleihenpreis) × 100
Wie man die Anleihen-Preis-Rechner verwendet (Schritt für Schritt)
- Wählen Sie die Anleihenart: Nullkupon oder Kuponanleihe.
- Geben Sie den Nennwert ein. Beispiel: 1000 oder 100000.
- Tragen Sie die Jahre bis zur Fälligkeit ein. Beispiel: 5 oder 10.
- Geben Sie die erforderliche Rendite (Marktrendite) als Prozentsatz ein. Beispiel: 6 für 6%.
- Bei Kuponanleihen: Geben Sie die Kuponrate ein und wählen Sie die Zahlungsfrequenz (jährlich, halbjährlich, vierteljährlich, monatlich). Wenn die Frequenz mehrmals pro Jahr ist, passen Sie Kupon- und Renditeperioden entsprechend an (siehe Tipp unten).
- Klicken Sie auf Berechnen. Der Rechner liefert Preis, Aufschlüsselung der Barwerte, Klassifizierung (Premium/Discount/Par), aktuelle Rendite, Duration und Konvexität.
- Optional: Führen Sie Sensitivitätsanalysen durch, indem Sie die erforderliche Rendite schrittweise verändern, um die Preisänderung und Zinsrisiken zu beobachten.
Praktische Hinweise zur Eingabe
- Wenn die Zahlungsfrequenz halbjährlich ist, teilen Sie die jährliche Kuponrate durch 2 und multiplizieren Sie die Jahre mit 2, um Perioden und Periodenzinsen zu erhalten.
- Runden Sie Ergebnisse sinnvoll (z. B. zwei Dezimalstellen) und dokumentieren Sie Annahmen wie Zinskonventionen und Steueraspekte.
- Bei Unternehmensanleihen berücksichtigen Sie Kreditrisiko und Liquidität, die über die reine Barwertrechnung hinaus relevant sind.
Beispiele praktische Anwendung
Beispiel 1: Kuponanleihe (jährliche Zahlungen)
Angaben: Nennwert 1000, Jahre bis zur Fälligkeit 10, Kuponrate 10% jährlich, erforderliche Rendite 8% jährlich.
Berechnungsschritte:
- Jährlicher Kupon = 1000 × 10% = 100
- Barwert der Kupons = 100 × (1 - (1+0.08)^-10) ÷ 0.08 ≈ 671.0
- Barwert des Nennwerts = 1000 ÷ (1.08^10) ≈ 463.19
- Gesamtpreis = 671.0 + 463.19 = 1134.19
Interpretation:
- Klassifizierung: Premium-Anleihe, weil Kuponrate (10%) größer ist als erforderliche Rendite (8%).
- Aktuelle Rendite = (Jährlicher Kupon ÷ Preis) × 100 = (100 ÷ 1134.19) × 100 ≈ 8.82%
- Duration (Macaulay) ≈ 6.96 Jahre. Das bedeutet, die mittlere Kapitalbindungsdauer liegt bei knapp 7 Jahren.
- Konvexität ≈ 57.06 (Preiskrümmungsmetrik). Höhere Konvexität zeigt eine stärkere nichtlineare Reaktion des Preises auf Zinsänderungen.
Beispiel 2: Nullkupon-Anleihe
Angaben: Nennwert 1000, Jahre bis zur Fälligkeit 5, erforderliche Rendite 6%.
Berechnung: Preis = 1000 ÷ (1 + 0.06)^5 ≈ 747.26
Interpretation:
- Keine periodischen Kuponzahlungen. Rendite entsteht durch Kurssteigerung bis zum Nennwert bei Fälligkeit.
- Klassifizierung: Discount-Anleihe gegenüber dem Nennwert, da dies ein Abschlag ist.
- Duration = 5 Jahre, weil die gesamte Zahlung am Ende erfolgt.
- Konvexität = n(n+1) ÷ (1+Rate)^2 = 5×6 ÷ 1.1236 ≈ 26.7.
Fazit und Nutzen des Rechners
Der Anleihen-Preis-Rechner liefert schnelle, transparente und nachvollziehbare Bewertungen von Anleihen. Er hilft dabei:
- den fairen Preis zu bestimmen und zu erkennen, ob eine Anleihe als Premium, Discount oder Par gehandelt wird,
- die Zinsrisiken mit Duration und Konvexität quantifiziert darzustellen,
- Sensitivitätsanalysen durchzuführen, um Preisreaktionen bei veränderten Marktzinsen zu simulieren,
- verschiedene Zahlungsmodi (Nullkupon, jährlich, halbjährlich, vierteljährlich, monatlich) zu vergleichen.
Tipps für die Praxis: Achten Sie auf die richtige Periodisierung bei anderen Zahlungsfrequenzen, verwenden Sie aktuelle Marktzinsen als erforderliche Rendite und ergänzen Sie die Barwertanalyse um Kredit- und Liquiditätsbewertungen, wenn Sie Unternehmensanleihen beurteilen.
Verwandte Rechner
Anleihen-Äquivalente-Rendite-Rechner
Berechnen Sie die anleihenäquivalente Rendite (BEY) annualisiert mit unserem Rechner. Konvertieren Sie kurzfristige Anleihenrenditen mit Präzision auf eine 365-Tage-Jahresbasis.
Anleihen-YTM-Rechner
Berechnen Sie die Rendite bis zur Fälligkeit (YTM) von Anleihen mit unserem YTM-Rechner. Bestimmen Sie die Rendite bis zur Fälligkeit unter Berücksichtigung von Preis, Kupon und Fälligkeitszeitraum für die Investitionsanalyse.
Anleihen-Rendite-Rechner
Berechnen Sie alle Arten von Anleihenrenditen mit unserem Rechner. Bestimmen Sie YTM, aktuelle Rendite, effektive Rendite und Rendite bis zum Kündigungstermin genau.